Database management Il.

Join Execution
Database optimisation

Gergely Lukacs
Pazmany Péter Catholic University

Faculty of Information Technology
and Bionics

Budapest, Hungary
lukacs@itk.ppke.hu

Index Usage - Query Selectivity

Check the following query with different constant values in the waERE condition (i.e.,

with different selectivities)!
SELECT Count (updated at)
FROM adl8 db.historyitems large

WHERE wuser id 50

1. When (at which selectivities) does the DBMS use the index? How does the

execution cost changes’? (Create a notice in form of a table: paramater value,
guery selecti

at changes, when querying COUNT(duratlon)’P When querying
SUM(duration)? Why?

(In both cases, please use the /*+ NO REWRITE */ optimizer hint!)

AD18__ DB HISTORYITEMS_LARGE

P "D MUMEBER (32}
" USER_ID NUMEER (",07
TAUDRIO_ID NUMEER (",07
" STARTED_AT TIMESTAMP WITH TIME ZCONE
" STARTED_AT_ZOME NUMEER {",0%
" DURATION NUMEER (",07
" RATING NUMEER (",07
" CREATED_AT TIMESTAMP WITH TIME ZCONE
UPDATED_AT TIMESTAMP WITH TIME ZCONE
" CREATED_AT_ZONE NUMEER (",07
" UPDATED_AT_ZONE NUMEER (",07
" FLAGS NUMEER (",0}

= HISTORYITEMSLARGE_FPKEY (II)

& HISTORYITEMS_LARGE_AUDIO_I (AUDIO_IDY

& HISTORYITEMSLARGE_PKEY (ID)

% HISTORYITEMS_LARGE_STARTED_| (S¥S_EXTRACT_UTCMSTARTED_AT")

% HISTORYITEMS_LARGE_STARTEDID_| (SYS_EXTRACT _UTC('STARTED_AT"), ID)

<& HISTORYITEMS_LARGE_USRSTRTD_| (USER_ID, S¥S_EXTRACT_UTCMSTARTED_AT")

Data Access Structures, Indexes

select user_id, count(*) from lukacs.historyitems large
group by user_id;

OPERATION OBJECT_NAME CARDINALITY CQOST
(= @ SELECT STATEMENT 9983 2382
=} HASH (GROUP BY) 9983 2382
. I]§ INDEX (FAST FULL SCAN) HISTORYITEMS_LARGE_USRSTRTD_I 2971500 1886

select user_id, count(*) from lukacs.historyitems large
group by user_id order by user_id;

OPERATION OBJECT_NAME CARDINALITY COST
(=} 8% SELECT STATEMENT 9983 2382
=@ SORT (GROUP BY) 9983 2382

- Elé INDEX (FAST FULL SCAN) HISTORYITEMS_LARGE_USRSTRTD_I 2971500 1886

Data warehouse queries

Large number of records
Ad-hoc queries, multiple dimensions
Aggregations

Read operations almost exclusively

Bitmap index
Materialized view + query rewrite

Geographic databases (> 1D

s
[+]

» Quadtree % | & EaRE
 R-free s
. K-D-Btree |1

Join execution

Join execution

Relational databases, nhormalisation
=> |arge number of joins

Join — very expensive
Several ways to execute

Nested loop join

Notes

* We are again considering “10
aware” algorithms: care
about disk 10

Recall that we read /
» Given a relation R, let: TGS PR Tk
— T(R) =# of tuples in R
— P(R) = # of pages in R

Nested Loop Join (NLJ)

Compute R > S on A:
forrinR:
forsin S:
if rf[A] == s[A]:
yield (r,s)

Nested Loop Join (NLJ)

Compute R ™ S on A:
forrin R:
forsin S:
if rf[A] == s[A]:
yield (r,s)

Cost:
P(R)

1. Loop over the tuples in
R

Note that our 10 cost is
based on the number of
pages loaded, not the
number of tuples!

Nested Loop Join (NLJ)

Cost:
Compute R x S on A: P(R) + T(R)*P(S)

forrin R: .

_ 1. Loop over the tuples in R
fcrsin S:

if r[A] == s[A]: 2. For every tuple in R,

_ loop over all the tuples
yield (r,s) ins

Have to read all of S from disk for every tuple
In R!

Nested Loop Join (NLJ)

Cost:
Compute R x S on A: P(R) + T(R)*P(S)
forrin R: .
_ 1. Loop over the tuples in R
forsin S:

over all the tuples in S

yield (r,s)

3. Check against join
conditions

Note that NLJ can handle things other than
equality constraints... just check in the if
statement!

Nested Loop Join (NLJ)

Cost:
Compute R x S on A: P(R) + T(R)*P(S) +
forrin R: OuT .
_ 1. Loop over the tuples in R
forsin S:
if r[A] == s[A]: 2. For every tuple in R, loop
: over all the tuples in S
yield (r,s)
3. Check against join
What would OUT could be conditions
OUT be if our bigger than :
join conditionis P(R)*P(S)... but 4. Write out (to page, then

trivial (if TRUE)? usually not that bad when page full, to disk)

Nested Loop Join (NLJ)

Cost:
Compute R x S on A: P(R) + T(R)*P(S) +
for rin R: LT |
¢ in's- What if R (“outer”) and
orsin-s. S (“inner”) switched?
if r[A] == s[A]:
yield (r,s)

P(S) + T(S)*P(R) +
OuT
Outer vs. inner selection makes a huge
difference- DBMS needs to know which relation
IS smaller!

Block Nested Loop Join
(IO-Aware variant)

Block Nested Loop Join (BNLJ)

Given B+1 pages of
memory

Cost:

Compute R < S on A: P(R) |

for each B-1 paages br of R:
1. Load in B-1 pages of R at

for paae ps of S: - :
ol 1 a time (leaving 1 page

for each tuple r in pr: each free for S & output)
for each tuple s in ps:
. -] Note: There could be some
i r_[A] == sl[Al: speedup here due to the
yield (r,s) fact that were reading in

multiple pages sequentially
however well ignore this
here!

Block Nested Loop Join (BNLJ)

Compute R x S on A:

for each B-1 pages pr of
R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:

if r[A] == s[A]:
yield (r,s)

Given B+1 pages of
CostMemMory
P(R)

P(R) + =—5 P(S)

1. Load in B-1 pages of R at
a time (leaving 1 page
each free for S & output)

2. For each (B-1)-page
segment of R, load each
page of S

Block Nested Loop Join (BNLJ)

Given B+1 pages of

CostMemMory
: P(R
Compute R > S on A: P(R) + ()P(S) I
for each B-1 pages pr of B—-1

R:
for page ps of S:

for each tuple r in pr:

1. Load in B-1 pages of R at
a time (leaving 1 page
each free for S & output)

for each tuple s in ps:

if rlA] == s[A]:

yield (r,s)

2. For each (B-1)-page
segment of R, load each
page of S

3. Check against the join
conditions

BNLJ can also handle non-equality
constraints

Block Nested Loop Join (BNLJ)

Compute R x S on A:
for each B-1 pages pr of
R:
for page ps of S:
for each tuple r in pr:

for each tuple s in ps:

if r[A] == s[A]:
yield (r,s)

Again, OUT could be bigger than
P(R)*P(S)... but usually not that
bad

Given B+1 pages of

Cost/memory

P(R) + 222 P(S) + OUT ‘

1. Load in B-1 pages of R at
a time (leaving 1 page
each free for S & output)

2. For each (B-1)-page
segment of R, load each
page of S

3. Check against the join
conditions

4. Write out

BNLJ vs. NLJ: Benefits of IO
S XV V=T =

* In BNLJ, by loading larger chunks of R, we
minimize the number of full disk reads of S

— We only read all of S from disk for every (B-
1)-page segment of R!

— Still the full cross-product, but more done only

NLg 1N memory BNLJ
P(R)+T(R*P(S)+ =) PR+ st PCS) +
OuUT ouT

(B-DT(R) |
P(R) i

BNLJ is faster by roughly

BNLJ vs. NLJ: Benefits of 10O

Aware
« Example:
— R: 500 pages
— S:1000 pages Ignoring OUT
— 100 tuples / page here...

— Wehave 12 pages of memory (B = 11)

« NLJ: Cost =500 + 50,000*1000 = 50 Million10s ~= 140 hours

« BNLJ: Cost = 500 + 50”;300” = 50 Thousand 10s ~= 0.14 hours

A very real difference from a small
change (IO-awareness)
In the algorithm!

Nested Loops Join cont.

* Index nested loops join ...
 temporary index nested loops join ...

25

Nested Loops Join

* Pros: any join condition

« Cons: expensive

— Better, If
» Tables fit in memory
« Smaller table fits in memory (-> inner table)

26

Sort-Merge-Join

Sort relations by join attribute,
Interleaved linear scan

R S
A B
5 2 zs =
7 ‘\ 6
7 =7
8 8
8 8
10 11

27

function
right,

var
var
var
var
var
var

var

Sort-merge join
sortMerge (relation left, relation
attribute a)

relation output

list left sorted := sort(left, a)
list right sorted := sort(right, a)
left key

right key

set left subset
set right subset

28

Sort-merge join 2

advance (left subset, left sorted, left key, a)
advance (right subset, right sorted, right key, a)
while not empty(left subset) and not empty(right subset)
1f left key = right key
add cross product of left subset
and right subset to output

advance (left subset, left sorted, left key, a)
advance (right subset, right sorted, right key, a)
else 1f left key < right key
advance (left subset, left sorted, left key, a)
else // left key > right key
advance (right subset, right sorted, right key, a)
return output

29

Sort-merge join 3

function advance (subset, sorted, key, a)
key = sorted[1l].a
subset = emptySet

while not empty(sorted) and
sorted[1l] .a = key

insert (subset, sorted[1l])

remove first element from sorted

30

Sort-merge join

 Join operators
— Also <, <=, >, >=

31

Simple Hash Join (1)

Partition relation R in Ry, R,, ..., R, with Hash-function h
so that for all tuples r € R, h(r.A) € H.

« Scan relation S, apply for each tuple s € S the hash
function h. Is h(s.B) in H;, search there for fitting r

while memory not exhausted do
insert next (R) 1nto partitionl[h (next(R) .A)];

Probe-phase

end
until R exhausted

e Size of
— Multip
— (Smal

Hash Join

nash-table > available RAM
e scans! (Very) slow!

Increase of data can cause large

Increase In run time!)

* (Grace hash join)
— Partitioning R and S via a hash function
— Join only within partitions
— avoids multiple rescanning of entire S relation

33

Hash Join

* Pros
— quick (if memory sufficient)!
 Cons

— Memory requirement
— Join operator: only ,="

34

Resource requirement,
complexity
(comparison step)

Nested-Loop Merge Hash

Element comparisons

Successful element comparisons

35

Comparison

Size and schema of relations In join
Avallable indices

Other operations (presorted intermediate
results)

Available memory
Join-type (natural join, theta-join, equijoin;
outer join?)

36

Cost based guery optimization

Query execution

« SQL: very high level, declarative
— What to retrieve, not how!
 SQL query is translated by the query

processor into a low level program — the
execution plan

« An execution plan Is a program that can
be executed to get the answer to the

query.

38

Key Idea: Algebraic
Optimization
* N = ((n*5)+(n*2)+0)/1
 Algebraic laws:
1. (+) identity: x+0=x
2. (/) identity: x/1=x
3. (*) distributes: (y*X)+(z*x)=(y+2z)*x
4. (*) commutes: y*x=x*y
* Rules 1, 3, 4,2:
— N=(5+2)*n

39

Relational algebra
Equivalences

1. Selection Ocicon ncn(R) =0 (00,(---(0,(R)) -..))
2. o IS commutative 6¢,(06,((R)) = o,,(0,((R))
3. n-cascades: If L, cL,c ... c L, then
m,(m, (- (m (R)) -.0) =7, (R)
4. Changing c and &

If the selection only refers to the projected attributes A, ..., A,

selection and projection can be exchanged

c7c(7TA1, An(R)) =Taq, ... An(Gc(R))

40

Equivalences 2

5. @, x, Uand N are commutative

6. A Cartesic product, followed by a selection referring to both operands can be

replaced by a join.

ocC(RES)=R xCc S

41

Equivalences...

Oy nco o rCh (R) = GCl(GCZ(. . .(GCn(R)) ...))
¢, (0¢,((R)) = o,(0,((R))

1 (11 (oo (1 (R)) -..)) = 1, (R)

GC(TCAl, An(R)) =Taq, ..., An(Gc(R))
ROS=S DR (4,0, U, N)

o (RES)=R xS

6.(R® S)=0,(R) ® S (~, B)

6(R @ S) = 6,(R) @ 0,,(S) (30, &)

T (R ™ S) = (ma,, . a(R)) X (5, B, (S))

m (R (Dgg))s) =1 ((Tay, .., An, A, o Ar(R)) M (Tgy B By
(R ®S) ®T = R ®(S T) (9, B, U,)

6(R @ S) =(c(R)) @ (5(S)) (v, N, -)

(R @ S) =(n (R)) @ (7. (S)) (v, N, -)

42

Query optimisation

One SQL query — many (!) different execution plans,
execution alternatives
— Index — using, not using
 tendence: selective query — using
» Multiple indices, which index to use?
— Join execution?
» Size of tables, available memory...
— Join order ?

Dramatically different costs!

Query optimizer: choosing a relatively good execution
plan

43

Query execution

SQL 1

Query parser ‘

Internal query description l

Transformation ‘

Internal query description l

Query optimizer ‘

Query Execution Planl

Query execution ‘

a4

Query execution (detalled)

Query parser \ﬁarsing \

l Semantic check (tables,
attributes — Data
Transformation ‘ DiCtionary)

View expansion

l

Query optimizer ‘ \\ /

Query execution ‘ 45

Query execution (detalled)

l

Query parser ‘

l

Transformation

Standardized description
(operator tree)

l y

Query optimizer ‘

l

Query execution ‘

46

Query execution (detalled)

l

Query parser ‘

l

/Optimisation (cost-based):
« Setting up execution plans
« Estimating their costs
« Selecting a cheap execution
plan

Transformation ‘

<‘ Query optimizer

Query execution ‘ 47

Query execution (detalled)

l

Query parser ‘

l

Transformation ‘

l

Query optimizer ‘

_ N
l Execution of selected
Query execution execution plan

%

48

Transformation, operator tree

Ttaq, Ao,..., An
select A,, A,, ..., A, ‘
from R,, R,,..., R s
where B ‘

%
= Ay Ao Ay (OB (R X Ry X .. x R)) /\
/X\ A
% R,

49

Example

select FlugNr

from (select F.*, FT.*, count (TicketNr)
from FLUG F, FLUGZEUGTYP FT,
BUCHUNG B
where B.FlugNr = F.FlugNr
group by F.*, FT.*, Datum)

as DFT (F.*,FT.*, count)

where F.FtypId = FT.Ftypld
and FT.First+FT.Business+FT.Economy
< DFT.count

50

Example

TUE FlugNr (
OF Ftypld =
FT.Ftypld A FT.First+FT.Business+FT.Economy < count (
pF.*,FT.*,count (
TUE «, FT.*, count (TicketNr) (

YE«, FT .+, Datum (
OB.FlugNr = F.FlugNr (FLUG F x FLUGZEUGTYP FT

BUCHUNG B))))))

FLUG F

F.Ftypld = FT.Ftypld A
FT.First+FT.Business+FT.Economy < cour

e B.FlugNr = F.FlugNr

FLUGZEUGTYP FT BUCHUNG B

Basic idea

« Some transformations always reasonable

« Some transformations depend on data
— Optimizing the average case

— Keep intermediate results as small as
possible

* Executing o, w early, x, B, uU,... late, as
— o and © reduces the volume of data,
— 4, ... result often in large intermediate results.

52

Example

e select Lname
from Employee, WorksOn,
Project
where Pname = 'GOM}
and Pnumber = PNO
and ESSN = SSN
and Bdate > 58.04.16

(Select the lastname of an employee born

after 16.04.58 and working on the project
”GOM”) 53

nLname

OPpname="GOM‘ A Pnumber = PNO A ESSN= SSN ~ Bdate > 58.04.16

: Cororer >

Selection as early, as possible 54

TCLname

Opnumber = PNO

X
<&=>
X
PROJECT
= WORKS_ON

e —

EMPLOYEE

Restrictive joins early

55

TCLname

GEssN=SSN

X

Gpnumb {\

r
f OBdate>58.04.16

Y |
/ \ @PLOYEE)

Opname='Gom*
@ORKS_OD
@omm)

Cross product and selection => join s

TCLname

M EssN=ssSN

OBdate>58.04.16

|

NPnumber = PNO

c5Pname:‘GOM‘

|
@OJECT)

WORKS_ON

Projections as early, as possible
(attributes for result and intermediate results kept)

57

TCLname

M EssN=sSN

TESSN

X Pnumber = PNO

/\

TUphumber TUESSN,PNO

oo
Pname="GOM < >
WORKS_ON

|
@OJECT)

nSSN,Lname

OBdate>58.04.16

I

58

Join-order

* Many joins
 Joins expensive

Left oriented join trees, greedy search..s

Execution mode

 Full calculation

—Node fully calculated before next
operator

* Pipeline
—Tuple calculated at one node sent
Immediately to next node

60

Execution modes (2)

Pipeline
breaker

Pipeline-Breaker

* Unary operations
— Sort
— Duplicate elimination (unigue distinct)
— Aggregation (min, max, sum)

* Binary operations
— Set difference

* Depending on the implementation
— Join
— Union

63

Unified description of operators

Iterator 1

Imformation on }

open || next || close || size co&@
s AN ™ “COStS

] -
[Initialisation T / \
>

Information on
selectivity

_)

Reading Clean up (closing it_era_tors, freeing
next tuple memory, stop blocking if full resulf
required

| —

~

Iterator

open || next | close || size || cost

/2R

Iterator Iterator
open || next open || next
Return (| \\\ _IT
result
Iterator
open || next

A

TOP-N Query

* Only the first N rows of the result are
required

« Execution plan optimized specifically for
this
— Hard decisions

— Soft decisions (internal restart of query
possible with a low probability)

66

Cost based selection

Query parser

l

Transformation

l

‘o

Query optimizer

l

Query execution

ptimisation (cost-based):

Setting up execution plans

Estimating thel

67

Declarative SQL-Query

Spanning search

\ 4

space

|
Equivalent execution
plans

Search

,<Acceptable (good)“ plan

68

Cost function

* Cost of execution

— One major factor: disk access, number of
blocks

 Size of Intermediate result of fundamental
Importance

— Estimation on selectivities required

« DBMS calculates and stores different
statistics on the data

69

Oracle

Database SQL Tuning Guide
(Oracle 12c, Database Administration)

Home / Database / Oracle Database Online Documentation 12c Release 1 (12.1) / Database Administration

Database SQL Tuning Guide S
i /ﬁ\ > Page 1 of 40
Optimizer with Oracle Database 12c Release 2

ORACLE WHITE PAPER | JUNE 2017

Contents

Expand All - Collapse All
Title and Copyright Information
» Preface

» Changes in This Release for Oracle Database SQL Tuning Guide

Part | SQL Performance Fundamentals
» 1 Introduction to SQL Tuning
» 2 SQL Performance Methodology

Part Il Query Optimizer Fundamentals
» 3 SQL Processing
» 4 Query Optimizer Concepts

» 5 Query Transformations

Part Ill Query Execution Plans

» 6 Generating and Displaying Execution Plans

» 7 Reading Execution Plans

Part IV SQL Operators: Access Paths and Joins
» 8 Optimizer Access Paths

» 9 Joins

Part VV Optimizer Statistics '

» 10 Optimizer Statistics Concepts

» 11 Histograms

71

Optimizer Operations

Table 11-1 Optimizer Operations

Operation

Description

Evaluation of expressions and conditions

The optimizer first evaluates expressions and conditions containing constants as fully as possible.

Statement transformation

For complex statements involving, for example, correlated subqueries or views, the optimizer might
transform the original statement into an equivalent join statement.

Choice of optimizer goals

The optimizer determines the goal of optimization. See "Choosing an Optimizer Goal".

Choice of access paths

For each table accessed by the statement, the optimizer chooses one or more of the available access
paths to obtain table data. See "Overview of Optimizer Access Paths".

Choice of join orders

For a join statement that joins more than two tables, the optimizer chooses which pair of tables is
joined first, and then which table is joined to the result, and so on. See "How the Query Optimizer
Chooses Execution Plans for Joins".

« Best throughput
* Best response time 79

Components of the Query
Optimizer

Parsed Query
ifram Parsen
Cluery
Transformer
lTransfnrrmd query
----- > Estimataor -4 Stateties Dictionary
:
| |
. lﬂunry +estimaies
:
| |
R Plan
Gene@tar

Cuery Plan
(to Row Sounce Generaton

Costs

The cost is an estimated value proportional to the expected resource
use needed to execute the statement with a particular plan. The
optimizer calculates the cost of access paths and join orders based on

the estimated computer resources, which includes 1/0, CPU, and
memory.

74

Statistics In databases

e Oracle
— TABLES:

° num_rows,
* num blocks
* avg_row len

— TAB_COL_STATISTICS
* num distinct
* num nulls
 num buckets

 INDEXES
——leaf;blocks
— blevel

75

Calculation of statistics

Task of database administrator (expensive task!)
analyze table relation

compute statistics for columns attribute,..., attribute
size value

analyze table relation
estimate statistics sample value percent

76

Tasks

Grapefon - schema

e LLMACE GROUFS
* -0 MUMEER (S] MUVEER
LF - LR IO FUEER MAME WaARCHARD (6 BYTE)
L GRO D FEER DESCRIPTION WARCHARD (XN EYTE)
* CREATED_AT TIMESTAMP WITH TIME ZONE < UPLOAD PEFMIESION MUVEER
LPOATED AT TIMEET AN WITH TIME ZOME © UET WMESEE MUVEER
* PEFRISSON MUNVEER SRR SR E MEER
© CREATED AT ZOME MUMEER " ALITCh ACCERT MUVEER
* LPDATED AT ZOME MUNVEER Es—™ - zErn MMEER
COLIR 'WARCHARD () BYTE) * CREATED AT TIMEST ALP WITH TIME ZOME
POATED AT TIMEST A W1 TH TIME ZOME
. MENEEREH 5 PREY (101 PUEL SHED AT TIMESTAMP WITH TIME ZCGHE
- MENBERS LR (LSER |0, GROUP IO RENET AT YINEET AL WITH FINE ZORE
¢ MEMBEREH IS PREY 00 wmlm_.-:_}.mg HVEER
4 MEMEERS UNIC (LEER |0, SROUP D) - ErEl AF BonE
= REMONED AT FONE MVEER
ime GRS PHE' Y 0]
o GRS PREY (0]
T
o MUVEER
b EmaL WARCHARS (28 B TE) T
i WARCHARD (X8 BRTE) FENT
PEFRAEE ON MEER - amn
M GLEST O WARCHARS (84 BYTE} B ! e
- CREATED_AT F - GRG0 MUEER
LPTATED AT TIMEST A WITH TINE ZOME el ol e e e
- LaST Lodin e WARCHARE (T B TE) _wﬂa!ﬂ.ﬁ FIMEST abg™ WITH TINE BOrE
= LAST_LOGIN_AT TIMEST AP WITH TIME ZC0E ° PERRASSION Ltlde !
. . CREATED AT ZOME MUMEER
FOPENAE WAFACHARE: B B TE - LT T
ELFMAE WARCHARS (58 BYTE) EOAT BONE MUMBER
T TIMEST AL WITH TIME ZOME = SHARES_PREY1 00)
© CREATED AT _ECHE MUVEER
= UPDWTED AT _FOME MMBER G SHARES PREYH0D)
© LAST LOGIM AT ZIORME MUVEER
= REMGVED AT _ICHE MUMEER }f
i LEERS EraL KEY (EMAL)
g LESERS GUEST |0 HEY (GLEST 10
o UEEFES PREY D)
T
G LISEFRS PHEY) 00 - o AVESER
G WEEFES ERAIL_KEY (EMAILY e + nne WARCHARC (58 BYTE)
o LSERS GUEST |O_KEY (GLUEST Oy ALITHOR WARCHARD N EYTE)
CESCRIPTION WARCHARS CAXN BYTE]
) FousER O MR
WARCHARS (84 BETE
1 CPEATED AT TIMEST Abg™ WITH TINE BOnE
| LPCIATED AT TIMEST AL WITH TIME ZOME
' EXPIRES AT TIMESTALP WITH TIME ZOME
[iescERAEms CLRATIEN MVEER
!] MUMEER () T TIMEST Al WITH TIME ZOHE
1 FoUEER D MUVEER C CREATED AT FOME MUMELR
1 Foaocio MUNEER T UPDATEDL AT ZOME MUVELR
I] HUVEER * REMOVED AT JONE MUVEER
| * CREATED AT TINMESTAR® WITH TIME 2OMNE © ENMPES AT ZOME MEER
E— TINEST b WITH TINE ZOHE
" CREATED AT _ZCHNE Fime PROGRARS PREY (0]
© UPDATED AT ZOME MUMEER
" ECRCE MLVEER i PROGRANE PREY 00)
Kime PLAYITEMS PHE® 1 (01 x 2
o PLAYITEMS PHEY 107 ot == = s
LIRCE IS TORTT T RS
T MLUMEER ()
FooousER D MVEER [l
b - ac o MUVEER T
= STARTED AT TIMEST AP W TH TIME Z00E
© STARTED AT ZOME MUVELR
° DLRATION MUVEER
 FATING. MUVEER
- CFEATED AT TIMEST AP W TH TIME Z00E
ATED_AT TIMEST AN WITH TIME ZOME
* CREATED AT _OME MUVEER
© UPDATED AT EOME MUMEER
© FLAGE MUVEER
kom. HISTIOHRE TEMS PHEY 001
& HISTORE TEMS PREY 000

Groups — statistics of shared audio recordings

0.1: Create a statistics showing the shared
audio content (count only) per group

— Handle groups not having any shared audio

content correctly
— Use column alias names
— Format the SQL command

B ~ame [l sHARES_coOuNT
PPKE ITK - 2&1-
Spirict - Demo 13
tekndseé 0

tekndss
[DEL] 3
teknds?
teszt 429

79

A

Groups — statistics of shared audio recordings

0.2. Create a statistics showing the shared
audio content (count + average length,
rounded to seconds) per group

— Handle groups not having any shared audio
content correctly

— Use column alias names
— Format the SQL command

NAME [sHarEs_COUNT || SHARES_TOTALLENGTH | SHARES_AVGLENGTH
PPKE ITK 24 7933 331
Spirit - Demo 13 532 41

tekndsé 0 {null) {null)
teszt X {null} {null)
{null} {null)
{null) {null)
{null) {null)
164076

{

{null)

382
null)

http://docs.oracle.com/cd/E11882 01/server.112/e26088/functions002.htm#SQLRF51178 80
Oracle® Database SQL Language Reference 11g Release 2 (11.2) Single-Row Functions

http://docs.oracle.com/cd/E11882_01/server.112/e26088/functions002.htm#SQLRF51178

Groups, statistics of shared
audio recordings and members

0.3. Extend the previous query with an

additional column showing the number of the
members in the group!

NAME | SHARES_CDL.INT| SHARES_TOTALLENGTH | MEMBERS_COUNT
tekndag 0 {null) 0
PPKE ITK Enekkar 1 130 5
Ermanuel 56 35442 18
0 (null) 0
[DEL] tekndss 0 {null) 0
[CEL] 3 0 {null}) a
5 0 {null) 0
tekndsd 0 {null) 0
Boardport a {mall) 3 81

Check the execution plan of the query (number of members
shared audio).

Oracle Documentation: Oracle 12 g Database SQL Tuning
Guide, https://docs.oracle.com/en/database/oracle/oracle-
database/12.2/tgsql/reading-execution-plans.html#GUID-
5AE1939F-F654-42FF-BOC5-706507CD12A2

82

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/tgsql/reading-execution-plans.html#GUID-5AE1939F-F654-42FF-B0C5-706507CD12A2

Check the execution plan of the following for queries! Can
you find any differences? What are the reasons for the
differences?

SELECT COUNT(*)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio _id;

SELECT COUNT (historyitems_large.rating)
FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio _id;

SELECT AVG(historyitems_large.rating)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;

SELECT COUNT (historyitems_large.updated_at)
FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;

Check the execution plan of the following queries! (For the
2nd and 3rd queries, please only check the execution plans,
without starting the queries.) What are the differences? Why?

SELECT COUNT (audio_large.user_id)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio _id;

SELECT COUNT (audio_large.user_id)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id BETWEEN historyitems_large.audio_id - 0.5 AND historyitems_large.audio_id + 0.5 ;

SELECT COUNT (audio_large.user_id)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id - historyitems_large.audio_id = 0;

84

Check changes in the execution plan as the selectivity of the
condition in the WHERE clause changes! (Change the
condition on the user_id first!)

SELECT *

FROM audio_large
inner join historyitems_large
ON audio_large.id = historyitems_large.audio_id
WHERE To_char(historyitems_large.started_at, 'yyyymmdd') = '20160302'
AND audio_large.user_id < 500;

