
Database management II.

Join Execution

Database optimisation
Gergely Lukács 

Pázmány Péter Catholic University

Faculty of Information Technology

and Bionics

Budapest, Hungary

lukacs@itk.ppke.hu



Index Usage - Query Selectivity

2

Check the following query with different constant values in the WHERE condition (i.e., 

with different selectivities)! 
SELECT Count(updated_at)

FROM ad18___db.historyitems_large

WHERE user_id < 50;

1. When (at which selectivities) does the DBMS use the index? How does the 

execution cost changes? (Create a notice in form of a table: paramater value, 

query selectivity, index usage (yes/no), execution cost.)

2. What changes, when querying COUNT(duration)? When querying 

SUM(duration)? Why?

(In both cases, please use the /*+ NO_REWRITE */ optimizer hint!)



3



4

Data Access Structures, Indexes

4



5



Data warehouse queries

• Large number of records

• Ad-hoc queries, multiple dimensions

• Aggregations

• Read operations almost exclusively

• Bitmap index

• Materialized view + query rewrite
6



Geographic databases (> 1D 

data)
• Quadtree

• R-tree

• K-D-B tree

7



8

Join execution

8



Join execution

• Relational databases, normalisation

=> large number of joins

• Join – very expensive

• Several ways to execute

9



10

Nested loop join

10



Notes

• We are again considering “IO 

aware” algorithms: care 

about disk IO

• Given a relation R, let:
– T(R) = # of tuples in R

– P(R) = # of pages in R

Recall that we read / 

write entire pages with 

disk IO



Nested Loop Join (NLJ)



Nested Loop Join (NLJ)

P(R)

1. Loop over the tuples in 

R

Note that our IO cost is 

based on the number of 

pages loaded, not the 

number of tuples!

Cost:



Nested Loop Join (NLJ)

P(R) + T(R)*P(S)

Have to read all of S from disk for every tuple 

in R!

1. Loop over the tuples in R

2. For every tuple in R, 

loop over all the tuples 

in S

Cost:



Nested Loop Join (NLJ)

P(R) + T(R)*P(S)

Note that NLJ can handle things other than 

equality constraints… just check in the if 

statement!

1. Loop over the tuples in R

2. For every tuple in R, loop 

over all the tuples in S

3. Check against join 

conditions

Cost:



Nested Loop Join (NLJ)

P(R) + T(R)*P(S) + 

OUT
1. Loop over the tuples in R

2. For every tuple in R, loop 

over all the tuples in S

3. Check against join 

conditions

4. Write out (to page, then 

when page full, to disk)

Cost:

What would 

OUT be if our 

join condition is 

trivial (if TRUE)?

OUT could be 

bigger than 

P(R)*P(S)… but 

usually not that bad



Nested Loop Join (NLJ)

P(R) + T(R)*P(S) + 

OUT
What if R (“outer”) and 

S (“inner”) switched?

Cost:

P(S) + T(S)*P(R) + 

OUT
Outer vs. inner selection makes a huge 

difference- DBMS needs to know which relation 

is smaller!



Block Nested Loop Join 

(IO-Aware variant)



Block Nested Loop Join (BNLJ)
Given B+1 pages of 

memory

1. Load in B-1 pages of R at 

a time (leaving 1 page 

each free for S & output)

Cost:

Note: There could be some 

speedup here due to the 

fact that we’re reading in 

multiple pages sequentially 

however we’ll ignore this 

here!



Block Nested Loop Join (BNLJ)

Given B+1 pages of 

memory

1. Load in B-1 pages of R at 

a time (leaving 1 page 

each free for S & output)

2. For each (B-1)-page 

segment of R, load each 

page of S

Cost:



Block Nested Loop Join (BNLJ)

Given B+1 pages of 

memory

1. Load in B-1 pages of R at 

a time (leaving 1 page 

each free for S & output)

2. For each (B-1)-page 

segment of R, load each 

page of S

3. Check against the join 

conditions

BNLJ can also handle non-equality 

constraints

Cost:



Block Nested Loop Join (BNLJ)

Given B+1 pages of 

memory

1. Load in B-1 pages of R at 

a time (leaving 1 page 

each free for S & output)

2. For each (B-1)-page 

segment of R, load each 

page of S

3. Check against the join 

conditions

4. Write out

Cost:

Again, OUT could be bigger than 

P(R)*P(S)… but usually not that 

bad



BNLJ vs. NLJ: Benefits of IO 

Aware
• In BNLJ, by loading larger chunks of R, we 

minimize the number of full disk reads of S

– We only read all of S from disk for every (B-

1)-page segment of R!

– Still the full cross-product, but more done only 

in memory

P(R) + T(R)*P(S) + 

OUT

NLJ
BNLJ

Lecture 14  >  Section 2  >  BNLJ



BNLJ vs. NLJ: Benefits of IO 

Aware

A very real difference from a small 

change (IO-awareness)

in the algorithm!

Ignoring OUT 

here…



Nested Loops Join cont.

• index nested loops join …

• temporary index nested loops join …

25



Nested Loops Join

• Pros: any join condition

• Cons: expensive

– Better, if

• Tables fit in memory

• Smaller table fits in memory (-> inner table)

26



Sort-Merge-Join

• Sort relations by join attribute, 

Interleaved linear scan

27



Sort-merge join
function sortMerge(relation left, relation 

right, attribute a)

var relation output

var list left_sorted := sort(left, a)

var list right_sorted := sort(right, a)

var left_key

var right_key

var set left_subset

var set right_subset

…     

28



Sort-merge join 2
…

advance(left_subset, left_sorted, left_key, a)

advance(right_subset, right_sorted, right_key, a)

while not empty(left_subset) and not empty(right_subset)

if left_key = right_key

add cross product of left_subset 
and right_subset to output

advance(left_subset, left_sorted, left_key, a)

advance(right_subset,right_sorted, right_key, a)

else if left_key < right_key

advance(left_subset, left_sorted, left_key, a)

else // left_key > right_key

advance(right_subset, right_sorted, right_key, a)

return output

…

29



Sort-merge join 3
…

function advance(subset, sorted, key, a)

key = sorted[1].a

subset = emptySet

while not empty(sorted) and 

sorted[1].a = key

insert(subset, sorted[1])

remove first element from sorted

30



Sort-merge join

• Join operators

– Also <, <=, >, >=

31



• Partition relation R in R1, R2, ..., Rp with Hash-function h
so that for all tuples r  Ri h(r.A)  Hi. 

• Scan relation S, apply for each tuple s  S the hash 

function h. Is h(s.B) in Hi, search there for fitting r

repeat

begin

while memory not exhausted do

insert next(R) into partition[h(next(R).A)];

foreach s  S do

foreach r  partition[h(s.B)] do

if r.A = s.B Res := Res  (r  s)

end

until R exhausted

Simple Hash Join (1)

Build-phase

Probe-phase
32



Hash Join

• Size of hash-table > available RAM

– Multiple scans! (Very) slow!

– (Small increase of data can cause large 

increase in run time!)

• (Grace hash join)

– Partitioning R and S via a hash function

– Join only within partitions

– avoids multiple rescanning of entire S relation
33



Hash Join

• Pros

– quick (if memory sufficient)!

• Cons

– Memory requirement

– Join operator: only „=“

34



Resource requirement, 

complexity

(comparison step) 

Element comparisons

Successful element comparisons

Nested-Loop Merge Hash

35



Comparison

• Size and schema of relations in join

• Available indices

• Other operations (presorted intermediate

results)

• Available memory 

• Join-type (natural join, theta-join, equijoin;

outer join?)

36



37

Cost based query optimization

37



Query execution

• SQL: very high level, declarative

– What to retrieve, not how!

• SQL query is translated by the query 

processor  into a low level program – the 

execution plan

• An execution plan is a program that can 

be executed to get the answer to the 

query.

38



Key Idea: Algebraic 

Optimization
• N = ((n*5)+(n*2)+0)/1

• Algebraic laws:

1. (+) identity: x+0=x

2. (/) identity: x/1=x

3. (*) distributes: (y*x)+(z*x)=(y+z)*x

4. (*) commutes: y*x=x*y

• Rules 1, 3, 4,2:

– N=(5+2)*n

39



Relational algebra

Equivalences
1. Selection c1c2 ... cn

(R)  c1
(c2

(…(cn
(R)) …))

2.  is commutative     c1
(c2

((R))  c2
(c1

((R)) 

3.  -cascades: If L1  L2  …  Ln, then

L1
(L2

(…(Ln
(R)) …))  L1

(R)

4. Changing  and 

If the selection only refers to the projected attributes A1, …, An, 

selection and projection can be exchanged

c(A1, …, An
(R))  A1, …, An

(c(R))

40



Equivalences 2

5.  , ⋈,  and  are commutative

6. A Cartesic product, followed by a selection referring to both operands can be 

replaced by a join.

c(R S)  R ⋈c S

....

41



Equivalences…

c1c2 ... cn
(R)  c1

(c2
(…(cn

(R)) …))

c1
(c2

((R))  c2
(c1

((R)) 

L1
(L2

(…(Ln
(R)) …))  L1

(R)

c(A1, …, An
(R))  A1, …, An

(c(R)) 

R  S  S  R (⋈, , , )

c(R S)  R ⋈c S

c(R  S)  c(R)  S (⋈, )

c(R  S)  c1
(R)  c2

(S) (⋈, )

L(R ⋈c S)  (A1, …, An
(R)) ⋈c (B1, …, Bn

(S))

L(R ⋈c S)  L((A1, …, An, A1', …, An'(R)) ⋈c (B1, …, Bn, B1', …, 

Bn'(S)))

(R S) T  R (S T) (⋈, , , )

c(R  S) (c(R))  (c(S)) (,  , −)

L(R  S) (L(R))  (L(S)) (,  , −)
42



Query optimisation

• One SQL query – many (!) different execution plans, 

execution alternatives

– Index – using, not using

• tendence: selective query – using

• Multiple indices, which index to use?

– Join execution?

• Size of tables, available memory…

– Join order ?

• Dramatically different costs!

• Query optimizer: choosing a relatively good execution 

plan

43



Query execution

Query parser

Query optimizer

Query execution

SQL

Internal query description

Query Execution Plan

Transformation

Internal query description

44



Query execution (detailed)

Query parser

Query optimizer

Query execution

Transformation

Parsing

Semantic check (tables, 

attributes – Data 

Dictionary)

View expansion

45



Query execution (detailed)

Query parser

Query optimizer

Query execution

Transformation
Standardized description

(operator tree)

46



Query execution (detailed)

Optimisation (cost-based):

• Setting up execution plans

• Estimating their costs

• Selecting a cheap execution

plan

Query parser

Query optimizer

Query execution

Transformation

47



Query execution (detailed)

Execution of selected 

execution plan

Query parser

Query optimizer

Query execution

Transformation

48



Transformation, operator tree

select A1, A2,..., An
from R1, R2,..., Rm
where B

 A1, A2,..., An
(B (R1  R2  ...  Rm))

R1 R2

R3

Rm







B

A1, A2,..., An

49



Example

select FlugNr

from (select F., FT., count (TicketNr)

from FLUG F, FLUGZEUGTYP FT,

BUCHUNG B

where B.FlugNr = F.FlugNr

group by F., FT., Datum) 

as DFT(F.,FT.,count)

where F.FtypId = FT.FtypId

and FT.First+FT.Business+FT.Economy 

< DFT.count

50



Example

F.FlugNr (

F.FtypId = 

FT.FtypId  FT.First+FT.Business+FT.Economy < count (

F.,FT.,count (

F., FT., count (TicketNr) (

F., FT., Datum (

B.FlugNr = F.FlugNr (FLUG F  FLUGZEUGTYP FT 

BUCHUNG B))))))

FLUG F FLUGZEUGTYP FT BUCHUNG B

 F.FlugNr


F.FtypId = FT.FtypId 

FT.First+FT.Business+FT.Economy < count

 F., FT., count

 F., FT., count (TicketNr)

 F., FT., Datum

 B.FlugNr = F.FlugNr





51



Basic idea

• Some transformations always reasonable

• Some transformations depend on data

– Optimizing the average case

– Keep intermediate results as small as 

possible

• Executing ,  early, ⋈, , ,… late, as

–  and  reduces the volume of data,

– ⋈, … result often in large intermediate results.
52



Example

• select Lname

from Employee, WorksOn, 

Project

where Pname = 'GOM‘

and Pnumber = PNO

and ESSN = SSN

and Bdate > 58.04.16

(Select the lastname of an employee born 

after 16.04.58 and working on the project 

„GOM”) 53



Lname

Pname=‘GOM‘  Pnumber = PNO  ESSN= SSN  Bdate > 58.04.16

EMPLOYEE WORKS_ON

PROJECT




Selection as early, as possible 54



Pnumber = PNO

EMPLOYEE

WORKS_ON

PROJECT

Pname=‘GOM‘
ESSN=SSN

Bdate>58.04.16





Lname

Restrictive joins early 55



PROJECT

WORKS_ON

EMPLOYEE





Lname

Pnumber = PNO

ESSN=SSN

Pname=‘GOM‘

Bdate>58.04.16

Cross product and selection => join 56



PROJECT

WORKS_ON
EMPLOYEE

Lname

⋈Pnumber = PNO

⋈ESSN=SSN

Pname=‘GOM‘

Bdate>58.04.16

57
Projections as early, as possible
(attributes for result and intermediate results kept)



Lname

PROJECT

WORKS_ON

EMPLOYEE

⋈Pnumber = PNO

⋈ESSN=SSN

Pname=‘GOM‘

Bdate>58.04.16

Pnumber ESSN,PNO

SSN,Lname
ESSN

58



Join-order

• Many joins

• Joins expensive

⋈

R1
⋈

⋈ R2

R3R4

⋈

R1
⋈

⋈R2

R3 R4

⋈

R1

⋈ ⋈

R2 R3 R4

Left oriented join trees, greedy search...59



Execution mode

• Full calculation

–Node fully calculated before next 

operator

• Pipeline

–Tuple calculated at one node sent 

immediately to next node

60



Execution modes (2)

R S

...

...

...

T

...

...

...

61



R S

...

...

...

T

...

...

...

Pipeline 

breaker

62



Pipeline-Breaker

• Unary operations

– Sort

– Duplicate elimination (unique distinct)

– Aggregation (min, max, sum)

• Binary operations

– Set difference

• Depending on the implementation

– Join

– Union

63



Unified description of operators

Initialisation

Reading 

next tuple

Clean up (closing iterators, freeing 

memory, stop blocking if full result 

required)

Information on 

selectivity

Information on 

costs

64



open
next

Return
result

65



TOP-N Query

• Only the first N rows of the result are 

required

• Execution plan optimized specifically for 

this

– Hard decisions

– Soft decisions (internal restart of query 

possible with a low probability)

66



Cost based selection

Query parser

Query optimizer

Query execution

Transformation Optimisation (cost-based):

• Setting up execution plans

• Estimating their costs

• Selecting a cheap execution

plan

67



Spanning search 

space

Declarative SQL-Query

Search

Equivalent execution 

plans

„Acceptable (good)“ plan

Logical

optimisation

Physical 

optimisation

Several operator trees

Execution variations 

(algorithms)

Cost based selection

68



Cost function

• Cost of execution

– One major factor: disk access, number of 

blocks

• Size of intermediate result of fundamental 

importance

– Estimation on selectivities required

• DBMS calculates and stores different 

statistics on the data

69



70

Oracle

70



Database SQL Tuning Guide 

(Oracle 12c, Database Administration)

71



Optimizer Operations

72

• Best throughput

• Best response time



Components of the Query 

Optimizer

73



Costs

74

The cost is an estimated value proportional to the expected resource 

use needed to execute the statement with a particular plan. The 

optimizer calculates the cost of access paths and join orders based on 

the estimated computer resources, which includes I/O, CPU, and 

memory.



Statistics in databases

• Oracle

– TABLES: 

• num_rows, 

• num_blocks

• avg_row_len

– TAB_COL_STATISTICS
• num_distinct

• num_nulls

• num_buckets

• INDEXES

– leaf_blocks

– blevel

75



Calculation of statistics

Task of database administrator (expensive task!) 

analyze table relation

compute statistics for columns attribute,..., attribute

size value

analyze table relation

estimate statistics sample value percent

76



77

Tasks

77



Grapefon - schema

78



Groups – statistics of shared audio recordings

79

0.1: Create a statistics showing the shared 

audio content (count only) per group

– Handle groups not having any shared audio 

content correctly

– Use column alias names

– Format the SQL command



Groups – statistics of shared audio recordings

80

0.2. Create a statistics showing the shared 

audio content (count + average length, 

rounded to seconds) per group

– Handle groups not having any shared audio 

content correctly

– Use column alias names

– Format the SQL command

http://docs.oracle.com/cd/E11882_01/server.112/e26088/functions002.htm#SQLRF51178
Oracle® Database SQL Language Reference 11g Release 2 (11.2) Single-Row Functions 

http://docs.oracle.com/cd/E11882_01/server.112/e26088/functions002.htm#SQLRF51178


Groups, statistics of shared 

audio recordings and members

81

0.3. Extend the previous query with an 

additional column showing the number of the 

members in the group!



82

Check the execution plan of the query (number of members, 

shared audio).

Oracle Documentation: Oracle 12 g Database SQL Tuning 

Guide, https://docs.oracle.com/en/database/oracle/oracle-

database/12.2/tgsql/reading-execution-plans.html#GUID-

5AE1939F-F654-42FF-B0C5-706507CD12A2

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/tgsql/reading-execution-plans.html#GUID-5AE1939F-F654-42FF-B0C5-706507CD12A2


Check the execution plan of the following for queries! Can 

you find any differences? What are the reasons for the 

differences?
SELECT COUNT(*)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;

SELECT COUNT(historyitems_large.rating)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;

SELECT AVG(historyitems_large.rating)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;

SELECT COUNT(historyitems_large.updated_at)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;



84

Check the execution plan of the following queries! (For the 

2nd and 3rd queries, please only check the execution plans, 

without starting the queries.) What are the differences? Why?

SELECT COUNT(audio_large.user_id)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id = historyitems_large.audio_id;

SELECT COUNT(audio_large.user_id)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id BETWEEN historyitems_large.audio_id - 0.5 AND historyitems_large.audio_id + 0.5 ;

SELECT COUNT(audio_large.user_id)

FROM audio_large

INNER JOIN historyitems_large

ON audio_large.id - historyitems_large.audio_id = 0;



85

Check changes in the execution plan as the selectivity of the 

condition in the WHERE clause changes! (Change the 

condition on the user_id first!)
SELECT * 

FROM audio_large

inner join historyitems_large

ON audio_large.id = historyitems_large.audio_id

WHERE To_char(historyitems_large.started_at, 'yyyymmdd') = '20160302' 

AND audio_large.user_id < 500;


